

Controlling Fairness and Bias in Dynamic Learning-to-Rank

ACM SIGIR 2020

Marco Morik^{*†}, <u>Ashudeep Singh</u>^{*†}, Jessica Hong[‡], Thorsten Joachims[‡]

⁺ TU Berlin, [‡] Cornell University

Dynamic Learning-to-Rank

Problem 1: Selection Bias due to position

Position Bias

- Number of clicks is a biased estimator of relevance.
 - Lower positions get lower attention.
 - Less attention means fewer clicks.
- Rich-get-richer dynamic: What starts at the bottom has little opportunity to rise in the ranking.

Problem 2: Unfair Exposure

51% Right Leaning

Prefer G_{right} news articles.

4 □= 5 6 1 2 2 3

Probability Ranking Principle [Robertson, 1977]: Rank documents by probability of relevance $\rightarrow y^*$.

Maximizes utility for virtually any measure U of ranking quality $y^* \coloneqq \operatorname{argmax}_{v}[U(y|x)]$

Ranking by true average relevance leads to unfair rankings.

Position-Based Exposure Model

Definition:

Exposure e_j is the probability a users observes the item at position j.

Exposure of Group:

$$Exp(G|x) = \sum_{j \in G} e_j$$

How to estimate?

- Eye tracking [Joachims et al. 2007]
- Intervention studies [Joachims et al. 2017]
- Intervention harvesting [Agarwal et al. 2019, Fang et al. 2019]

Disparate exposure allocation: A small difference in average relevance, leads to a large difference in average exposure!

Outline

- Exposure Model
- Fairness Notions
 - FairCo Algorithm
 - Unbiased Average Relevance estimation
 - Unbiased Relevance estimation for Personalization

	Exposure Fairness	Impact Fairness
Goal	Exposure is allocated based on relevance of the group. Exp(G x) = f(Rel(G x))	The expected impact (e.g. clickthrough rate) is allocated based on merit. Imp(G x) = f(Rel(G x))For the position bias model, Imp(d x) = Exp(d x)Rel(d x)
Constraint	Make exposure proportional to relevance (per group) $\frac{Exp(G_0 x)}{Exp(G_1 x)} = \frac{Rel(G_0 x)}{Rel(G_1 x)}.$	Make the expected impact proportional to relevance (per group) $\frac{Imp(G_0 x)}{Imp(G_1 x)} = \frac{Rel(G_0 x)}{Rel(G_1 x)}.$
Disparity Measure	$D^{E}(G_{0}, G_{1})$ $= \left[\frac{Exp(G_{0} x)}{Rel(G_{0} x)} - \frac{Exp(G_{1} x)}{Rel(G_{1} x)}\right].$	$D^{I}(G_{0}, G_{1}) = \left[\frac{Imp(G_{0} x)}{Rel(G_{0} x)} - \frac{Imp(G_{1} x)}{Rel(G_{1} x)}\right].$

1

[Singh & Joachims. Fairness of Exposure in Rankings. KDD 2018]

Does not satisfy Fairness of Exposure or Fairness of Impact.

Dynamic Learning-to-Rank

Sequentially present rankings to users that \Box Maximize Expected User Utility $\mathbb{E}[U|x]$ \Box Ensure Unfairness D_{τ} goes to 0 with τ .

Fairness Controller (FairCo) LTR Algorithm

FairCo: Ranking at time τ Proportional Controller: Linear feedback
control system where correction is
proportional to the error. $\widehat{R}(d|x)$: Estimated
Conditional
Relevance $\lambda > 0$ $err_{\tau}(d) = (\tau - 1) \max_{G_i}(\widehat{D}^E_{\tau}(G_i, G(d)))$ • Theorem: When the problem is well posed, FairCo ensures that $\overline{D}_{\tau} \to 0$ as $\tau \to \infty$ at the
rate of $\mathcal{O}\left(\frac{1}{\tau}\right)$.

- Requirements:
 - Estimating Average Relevances $\hat{R}(d)$.
 - Estimating Unbiased Conditional Relevances $\hat{R}(d|x)$ for personalization.

Estimating Average Relevances

- Average number of clicks is not a consistent estimator.
- IPS weighted clicks: $\hat{R}^{IPS}(a)$

$$d^{\text{IPS}}(d) = \frac{1}{\tau} \sum_{t=1}^{\tau} \frac{\mathbf{c}_t(d)}{\mathbf{p}_t(d)}.$$

 $c_t(d)$: Click on d at time t. $p_t(d)$: Position bias at the position of d.

[Joachims et al., 2017]

• $\hat{R}^{IPS}(d)$ is an unbiased estimator of a document's relevance.

Experimental Evaluation Simulation on Ad Fontes Media Bias Dataset

Can FairCo break the Rich-get-richer dynamic? Effect of the initial ranking after 3000 users.

Can FairCo ensure fairness for Minority user groups?

Outline

- Exposure Model
- Fairness Notions
- FairCo Algorithm

- Unbiased Average Relevance estimation
- Unbiased Relevance estimation for Personalization

D-ULTR: Relevance Estimation for Personalized Ranking

$$\mathcal{L}^{\mathbf{c}}(w) = \sum_{t=1}^{\tau} \sum_{d} \hat{R}^{\mathrm{w}}(d|\mathbf{x}_{t})^{2} + \frac{\mathbf{c}_{t}(d)}{\mathbf{p}_{t}(d)}(\mathbf{c}_{t}(d) - 2\hat{R}^{\mathrm{w}}(d|\mathbf{x}_{t}))$$

 \hat{R}^{w} : Output of a Neural Network with weights w. $c_t(d)$: Click on d at time t. $p_t(d)$: Position bias at position of d.

- To estimate: $\hat{R}^{w}(d|\mathbf{x}_{t})$ Relevance of document d for query \mathbf{x}_{t} .
- Train the neural network by minimizing $\mathcal{L}^{c}(w)$.
- $\mathcal{L}^{c}(w)$ is unbiased i.e. in expectation it is equal to a full information squared loss (with no position bias).

Evaluation on Movielens dataset

- Completed a subset of Movielens dataset ($10k \times 100$ ratings matrix) using matrix factorization.
 - Selected 100 movies from top-5 production companies in ML-20M dataset. Groups: *MGM, Warner Bros, Paramount, 20th Century Fox, Columbia.*
 - Selected 10k most active users.
- User features x_t come from this matrix factorization.

Goal: Present ranking to each user u_{τ} to maximize NDCG while making sure the production companies receive fair share of exposure relative to the average relevance of their movies.

Does FairCo ensure fairness with effective personalization?

Personalized Rankings achieve high utility (NDCG), while reducing Unfairness to 0 with τ .

Conclusions

- Identified how biased feedback leads to unfairness and suboptimal ranking in Dynamic-LTR.
- Proposed FairCo to adaptively enforce amortized fairness constraints while relevances are being learned.
 - Easy to implement and computationally efficient at serving time.
- The algorithm breaks the rich-get-richer effect in Dynamic-LTR.

Thank you!

Controlling Fairness and Bias in Dynamic Learning-to-Rank

Marco Morik^{*†}, Ashudeep Singh^{*‡}, Jessica Hong[‡], Thorsten Joachims[‡]

⁺ TU Berlin, [‡] Cornell University

ACM SIGIR 2020

