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Abstract. In the work here presented, we apply textual and sequential
methods to assess the outcomes of an unconstrained multiparty dialogue.
In the context of chat transcripts from a collaborative learning scenario,
we demonstrate that while low-level textual features can indeed predict
student success, models derived from sequential discourse act labels are
also predictive, both on their own and as a supplement to textual feature
sets. Further, we find that evidence from the initial stages of a collabo-
rative activity is just as effective as using the whole.
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1 Introduction

Intelligent tutoring and computer-supported collaborative learning can both pro-
vide cognitive, metacognitive, and social benefits to learners [13, 22, 27]. These
systems also offer a wealth of process data to researchers and developers. This
windfall can be used to analyze learning and other behavioral processes, and
opens the door to automatic moment-to-moment formative assessment and sup-
port. The recent boom in massive and open online courses, with their similarly
massive student-to-human-teacher ratios, has underlined both the need and the
potential for such data-driven assessments and interventions. In this paper, we
present multiple sources of predictive features from the chat transcripts of a col-
laborative learning scenario. As a baseline, we show that features based on the
lexical and syntactic contents of student contributions in chat are predictive. We
then supplement those features by paying attention to the sequence and struc-
ture of dialogue at the discourse level, and demonstrate that these features can
anticipate student learning.

The remainder of this paper is organized as follows: In Section 2, we review
relevant literature and establish a theoretical framework for our contribution.
In Section 3, we describe the collaborative learning context which we analyze
according to the methods presented in Section 4. We present our results in
Section 5, and offer some in-depth interpretation. We end with a look forward,
to future applications and extensions of this work.
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2 Background

This paper grounds itself in the fields of Educational Data Mining and Computer
Supported Collaborative Learning. In particular, we build upon prior work that
has successfully employed a variety of methods for feature extraction and pattern
learning to predict affective, collaborative, and learning outcomes from discourse.

Linguistic analysis methods for studying both individual learners and small
groups [11] have been be used to assess cognitive and meta cognitive knowl-
edge [10], critical thinking, knowledge construction [9] and consensus building
techniques [16]. In many cases [5, 26], methods for automatically labeling these
features are developed hand-in-hand with their application to a prediction task.
Analysis applied to course message boards has shown it is possible to detect
unresolved questions [12] in asynchronous discussions, and that patterns of in-
teraction and participation can be used to predict final learning outcomes [21]. In
the context of a single-user conversational tutor, a set of conversational features,
including measures of the quality and content of student answers as derived
from Latent Semantic Analysis [15], have been successfully applied to predict
the moment-to-moment affect of the learner [5].

In intelligent tutoring systems with a conversational component, automated
analysis methods may be employed as formative assessments, predicting student
learning or collaborative performance. These predictions can be used to inform a
tutor’s interventions during future learning experiences, or to provide moment-
by-moment facilitation in response to continuous assessment [1]. Recent work
has demonstrated the power of data mining for building moment-to-moment
models of student learning [2], although as this work was situated in a non-
conversational tutoring system, it did not leverage linguistic features to antic-
ipate learning. Fully automated coding and modeling methods have been used
to successfully predict the outcome of a facilitated civil-dispute negotiation [26].
Models of conversational trajectory have also been developed as a source of feed-
back for learners and their human instructors, using a set of features describing
conversational attributes derived from per-turn coding of a conversation [3, 4].
In that work, each coded move contributes to one of four underlying conversa-
tional dimensions (conformity, creativity, elaboration, and initiative), allowing
concrete quantitative measures to power a qualitative analysis of group state.

Hidden Markov Models [20] trained on sequences of student-selected sentence-
opener moves have been used to classify and describe groups of collaborative
learners as more or less productive [24, 25]. HMMs have also been applied to
surveys of participant emotion, to draw inferences about underlying affective or
cognitive state [6]. However, such work has relied on participants selecting their
next move or observed state from a limited set of options. More recent work
has used n-grams or stretchy patterns [8] over discourse act labels to model
local conversational structure and predict group task success [19]. Although this
body of work illustrates the potential of sequential models for understanding
student state, their suitability as a method for assessing individuals within an
unconstrained multiparty discourse has not been fully explored.
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3 Context and Corpus: College Chemistry Collaboration

We conduct our study data collected from a small-group chat-based collaborative
task in the domain of college chemistry. The participants in this study were first-
year undergraduate students in an introductory chemistry course, during a unit
on intermolecular interactions. Students were randomly assigned to groups of
three or four. Participation in the exercise was voluntary, and students had the
option of not consenting for their data to be included in our research. Altogether,
our analysis includes data from 50 consenting students from 16 different groups
- with a mean of 93 messages per student, or 292 per group. Students were
administered a pre-test the day before they completed the task, and completed
a post-test the day after. Two test forms were randomly counter-balanced by
student between pre- and post-test.

This task and chat environment have been used before to study methods for
automatic discussion facilitation [1]. The 90-minute task focuses on intermolecu-
lar forces and their influence on the boiling points of liquids. The task was framed
as a collaborative data analysis activity, where the students in each group were
assigned to read individually about one of three classes of molecules, and the
factors most likely to influence their boiling point. This division also provided
intrinsic motivation for collaboration, as the task could not be completed with-
out knowledge from each of the student experts. A conversational agent [14]
facilitated the activity for each group, presenting the series of exercises to the
group and prompting them to explain their reasoning to each other.

4 Methods: Predicting Learning from Conversation

We aim to capture the properties of conversation that are distinctive of more (or
less) successful learners. Low-level lexical and syntactic features are examined
alongside higher-order representations of discourse, and evaluated as candidates
for automating future formative assessment. In order to assess individual learn-
ing, we first build a linear model, predicting student post-test score from pre-test
score alone. This model accounts for 61% of variance in student performance. The
impact of collaboration, if any, might be found in the remaining unaccounted-
for variance. Thus, we use as our target the residual from this regression in the
remainder of the analysis.

4.1 Baseline Textual Features

Especially in unstructured conversational data, the success of a machine learning
algorithm is tied to the feature representation of the contents of that data. We
first use “bag-of-words” features, which represents only the vocabulary used
in a conversation (including both content words and function words). We then
present a second model, based on “complex language” features. This model
contains a superset of the bag-of-words feature set. Adjacent pairs of words
(bigrams) and local syntactic part-of-speech bigrams are added as features.
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In addition to a single student’s language (the Student Only condition
above), much of her learning may be tied up in her interactions with peers. We
therefore introduce an additional text representation (Whole Group), includ-
ing features for all students in each conversation as a second feature set. These
new features are represented as distinct - thus any unigram may appear twice in
an instance as a distinct feature, once if spoken by the student of interest, and
again if spoken by any of her groupmates.

Finally, in order to evaluate our methods’ suitability for mid-activity formative
assessment, we also test the condition where only features from the first third of
each student transcript are used for prediction (Start Only), stopping at the
end of the first phase of the activity described in Section 3.

We train a Naive Bayes classifier to differentiate groups with a positive resid-
ual (learning more than the pre-test would suggest) from those with a negative
residual. To avoid overfitting (identifying the peculiarities of individual groups,
rather than overall trends in student behavior), results of our machine-learning
experiments are presented from 16-fold leave-one-group-out cross-validation. In
this arrangement, models are trained on 15 groups of 46 or 47 students, and
tested on the remaining group of 3 or 4 students. Reported performance is av-
eraged across groups. The model is limited to using the top 100 most predictive
language features on each training fold, using χ2 feature selection [7].

4.2 Active Learning Annotation

To represent features above the contributions of individual lines of dialogue, we
refer to established frameworks for conversational analysis. In Barros et al.’s
work, a set of attributes for qualitative conversational analysis is proposed [4]
based on a set of six sentence-opening moves. This is similar to the scheme used
by Soller [23]. We combine Barros’ two types of proposal and consider just five
types of “Active Learning” moves:

– Proposals (PR) begin a sequence and introduce a new concept or idea.
– Questions (QU) target proposals and question them.
– Clarifications (CL) are elaborations on proposals, or answers to questions.
– Agreements (AG) show agreement or assent between speakers in a sequence.
– Remaining contributions are Comments (CM); including topic statements,

floor grabbing moves, pauses, etc.

In earlier works, assignment of turn labels relied on student inputs being con-
strained to a fixed set of sentence-openers. In our approach, the students are
not thus fettered, and we instead rely on annotation of free text. To allow this
flexibility, we adapted a coding manual based on the systemic functional lin-
guistics “Negotiation” framework [17], describing the flow of information and
action within a conversation. Recent work has shown that Negotiation annota-
tion can be automated for freeform chatroom conversations [18]. With an eye
toward such future automation, we adapted Mayfield’s coding manual, convert-
ing Negotiation labels to Active Learning moves using heuristics. This manual
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was first validated on separate pilot data. For this data, three transcripts (about
2000 turns of conversation) were coded by both annotators to check reliability,
and the rest were each coded by a single annotator. Resulting reliability was
high for Active Learning annotations, κ = 0.75.

From these annotations, we can now represent sequences of labeled turns as
inputs to our machine learning algorithms. As a starting point (Active Learn-
ing Trigrams), we use sequences of three consecutive labels, extracted from the
sequence of labeled turns, as a feature for our group and student tasks. In the
case of per-student outcome prediction, each tag is differentiated based on who
(relative to the student in question) is speaking - either the student herself, or
another participant. For example, PRs is a proposal issued by this student, CLo

is a clarification by another student, and so on. We consider this representation
both on its own and as a supplement to our textual features.

As in Section 4.1, we train a Naive Bayes classifier with these features and
report results from 16-fold cross-validation. As an additional experiment, we
also evaluate a single classifier trained on the combined feature set of Active
Learning Trigrams and “complex language” features.

4.3 Predicting Learning with Contrastive Hidden Markov Models

As a more sophisticated differentiator of conversational structure, we use Hid-
den Markov Models [20] to model variation between successful and unsuccessful
students. HMMs are a sequential labeling algorithm, where observed behaviors
are assumed to be a result of an unobserved, hidden state. In this case, states
may correspond to a student’s intention when contributing a new turn to the
dialogue. By analyzing sequences of observed labels, HMMs can discover these
unobserved states statistically.

Following Soller et al. [24], we train two HMMs with four hidden states, on
sequences drawn from subsets of the corpus - one using the sequences from
the four students with the highest residuals, the other using the four students
with the lowest residuals. The resulting models should distinguish the sequential
behaviors of unusually high- and low-performing students. We make no presump-
tions about the meanings of specific hidden states [6], although we expect to see
meaningful patterns relevant to collaborative discourse.

As with our textual experiments, we use leave-one-group-out cross-validation,
so no student transcript is evaluated on a model trained on a member of that
transcript. For each held-out student in the test group, we calculate the nor-
malized sequence likelihood of their entire transcript for each model, and use
the likelihoods that the two models assign to the held-out data as features for
a linear model performing binary classification. To mirror the Start Only con-
ditions above, we also apply the same procedure to only the first third of the
Active Learning sequences in each transcript, to assess this method’s suitability
for in-process formative assessment.
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5 Results and Discussion

Results for the classification experiments using textual features are presented in
Table 1. In general, we find that richer text features and including context from
group members’ posts both contribute to performance well above an individual
student’s vocabulary alone, and their benefit is somewhat additive. Further, in
the more complex model we find that using only features from the starting section
of each transcript perform statistically indistinguishably from models built on
the entire transcript, suggesting that such methods may enable mid-activity
formative assessments based on conversational features.

Table 1. Predicting individual learning above or below expected levels with textual
features alone, based on raw accuracy (%) and Cohen’s kappa. Bold represents a
marginal improvement over baseline accuracy, p < 0.1.

Student Only Whole Group Start Only
Feature Set % κ % κ % κ

Bag-of-words 0.58 0.14 0.64 0.25 0.49 -0.01
Complex language 0.64 .025 0.70 0.38 0.68 0.38

In Table 2, we see the impact of Active Learning sequential features. Active
Learning trigrams appear to offer additive benefit alongside textual features, im-
proving our ability to predict student over- or underperformance. Using the more
sophisticated contrastive HMM model, we are able to replicate this performance
by only modeling states based on sequences of Active Learning tags. Table 3
lists a few features from this combination model that are highly predictive of
high and low residual scores.

Table 2. Predicting individual learning above or below expected levels with sequential
dialogue features. Bold represents marginal improvement over baseline, p < 0.1.

Sequence Representation % κ

Active Learning Trigrams 0.66 0.30
Trigrams + Textual Features 0.72 0.43
Contrastive HMMs 0.72 0.44
Contrastive HMMs (Start Only) 0.64 0.28

5.1 Qualitative Analysis of Contrastive HMMs

The output of the contrasting HMMs can be used to gain insight into the con-
versational habits of more (or less) successful students. Figure 1 illustrates the
difference in transition patterns between student with higher and lower residual
scores. Note that although the learned states were not predetermined, fairly con-
sistent groupings emerge between models. In the model for higher scores, we see
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Table 3. Representative features for high or low residual scores

Feature Actor(s) Class Example

thinking student high i’m thinking in between

ADV WH other high so why not higher?

CLoPRsQUs both high yep - the dipole moment is what’s different
chcl3 second highest, ch3cl third highest
the last one has no dipole moment then?

agree ? student low KCl will be in the middle . . . agree?

ADJ CONJ other low smaller or bigger?

CLoQUoPRo other low i think the bp increases as we go down the table
does all 3 increase down the table?
i think the dipole moment is more important

CLo
CLs
PRo

CLs
PRs
AGo

QUo
QUs

AGo
PRo
PRs
AGs

Agreeing to ideas

Student contribution

Asking questions

Clarifying details

Higher Residuals

p < 0.25 p < 0.50 p < 0.75p < 0.10

CLo
CLs
PRo

QUo
CLo
QUs
PRs

QUo
PRo
QUs

PRo
AGo
AGs

Agreeing to ideasAsking questions

Asking questionsClarifying details

Lower Residuals

Transition Probabilities:

Fig. 1. Learned High and Low State Transitions

a strong flow between states that have high emission probabilities for questions
and clarifying statements, and from clarification to agreement to proposals. In
particular, the high-residual model favors transitions from questioning, to clar-
ification, to agreement and new ideas, whereas there’s a comparatively weak
flow out of the clarification state in the low-residual model. The low-residual
model also displays stronger tendencies toward loops in the clarification and
questioning states. It may be that students who fit the lower-residual model find
themselves in groups experiencing more confusion, but with less productive res-
olution. The low-residual model expects a lesser degree of student participation
(as indicated by lower emission probabilities for student moves, versus moves by
others). A hard-to-reach state focusing on student contributions is unique to the
high-residual model, which favors reentry into the question-clarify-agree loop.
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Table 4. Highly likely sequences, according to the HMMs for high and low residual
scores (top and bottom). Note that comments are not included in the model.

Tag Text

PRo yea they are made up of the same molecules so i cant really tell yet

QUs It’s going to be in the middle right?

CLo its going to be the smallest because the dipole moment is the smallest

QUo so its actually smallest?

CLs wait just kidding i read that wrong! Smallest.

AGo ya smaller dipole=smaller boil pt

PRo

Polar molecules have a permanent dipole moment which is caused by
differences in electronegativity between bonded atoms. One might have more
electronegativity than the other causing a nonuniform electron distribution.

CLs In my intro, it said dipole moments do not at all affect the boiling point

PRo The table shows you it does though

AGs yeah this one shows that it does

CMs which is weird

PRo They look like nonpolar molecules

Some highly probable sub-sequences according to each model are illustrated in
Table 4, with examples from the corpus.

6 Conclusions and Future Work

The experiments presented in this paper identify successful methods for predict-
ing learning outcomes from conversational transcripts. However, the small size
of this dataset makes it difficult to draw robust conclusions of statistical signifi-
cance. Future work will look to explore the predictive power of Active Learning
sequences in larger-scale and more diverse collaborative learning contexts, and
to pursue the potential in combining textual cues with conversational sequence
information in a more sophisticated ways. Further, we hope to use such models
as real-time formative assessments based on similar conversational cues to direct
instruction and provide agile conversational support for collaborative learning.
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